Routing for Relief Efforts

Minimising Response Time in Natural Disasters

Outline

- Motivation
- Research Question
- Method
- Experiments
- Conclusion

Motivation

- Rescue of people during natural disasters
- Minimizing Response Time
- Vehicle Routing Problem

Turkey Earthquake 2023 Destruction [im1]

Depot
 Recipient

Last-Mile Delivery Problem Instance Example [1] Marvin Beese - Routing for Relief Efforts

Minimizing Response Time of Relief Vehicles

Method – MinMax, MinSum

- Network of Recipients
- Directed tours
- Objective functions for optimization
 - Minimization of the Maximum arrival time (MinMax)
 - Minimization of the Summation of arrival times (MinSum)

(b) minmax is different from minsum [2]

Method – Theoretical Considerations

- Graph-network G = (R, E, W)
 - Recipients $R = \{r_1, \dots, r_m\}$
 - Edges $E = \{(e_{lk}) | e_{lk} \text{ connects } r_l, r_k \in R, l \neq k\}$
 - Weights $W = \{w_{lk} | w_{lk} \text{ corresponds to } e_{jk}\}$
- Capacity:
 - \forall Vehicles n_i , \exists capacity c_i

Method – Theoretical Considerations

- Graph-network G = (R, E, W)
 - Recipients $R = \{r_1, \dots, r_m\}$
 - Edges $E = \{(e_{lk}) | e_{lk} \text{ connects } r_l, r_k \in R, l \neq k\}$
 - Weights $W = \{w_{lk} | w_{lk} \text{ corresponds to } e_{jk}\}$
- Capacity:
 - \forall Vehicles n_i , \exists capacity c_i
- + Feasibility:
 - Vehicle n_i can reach recipient r_j
- + Demand:
 - \forall Recipients r_j , \exists demand d_j
- + Deadline:
 - \forall Recipients r_j , \exists deadline t_j

Method – Programmatical Implementation

Method – Programmatical Implementation

Method – Programmatical Implementation

TSP, MinMax and MinSum with Notes [2]

• Integra	tion of
-----------	---------

- Capacities
- Feasibilities
- Demands
- Deadlines

-API

|-Carthography |-Routing |-Seismic

|-Routing

|-Directional |-Permutational |-Distantial

|-Solver

|-MinSum

|-MinMax

|-Instanciation

|-Depot

|-Vehicle

|-Capacities

Experiments

- Theoretical Setting:
 - Graph with 1 depot and 4 recipients
 - Different distances
 - Uniform capacities

individual vehicle costs	Approach									
	Basic	Feasibility	Deadline	Feasibility + Deadline						
MinMax	v1: 27, v2: 22	v1: 20, v2: 37	v1: 15, v2: 34	v1: 20, v2: 24						
MinSum	v1: 27, v2: 22	v1: 20, v2: 24	v1: 29, v2: 27	v1: 29, v2: 27						

Table 1. Individual vehicle costs for inexact implementations of the MinSum and MinMax

Experiments

- Real-World Setting
 - Graph with 4 recipients
 - Real-world coordinates
 - Capacitated MinSum insertion algorithm
 - 2 vehicles

Conclusion

- Relief Routing with MinMax and MinSum Algorithms
- Integration of additional heuristics: Feasibilities, Demand, Deadlines
- Embedding of Cartography and Seismic activity with real-world and live data
 - End-to-End Integration: Instantiation \rightarrow Visualization
- Future Work: Dealing with Uncertainties, Extensive Experiments

References

[1] M. Huang, K. Smilowitz, and B. Balcik, "Models for relief routing: equity, efficiency and efficacy," Procedia-social and behavioral sciences, vol. 17, pp. 416–437, 2011.

[2] A. M. Campbell, D. Vandenbussche, and W. Hermann, "Routing for relief efforts," Transportation science, vol. 42, no. 2, pp. 127–145, 2008.

[im1] Satellite image ©2023 Maxar Technologies Handout. (Reuters),

https://english.alarabiya.net/News/world/2023/02/09/Satellite-images-show-Turkey-before-andafter-tragic-quake-that-killed-over-16-000

[im2] Earth Systems Science Data – MDAS: a new multimodal benchmark dataset for remote sensing <u>https://essd.copernicus.org/articles/15/113/2023/</u>

scienceof

Contact: <u>m.beese@campus.tu-berlin.de</u>

https://github.com/bmarv/relief-routing-models

Intelligence https://www.scienceofintelligence.de/people/marvin-beese/

Backup – Feasibilities & Deadlines

Algorithm 1 Pseudocode of the Minmax-Insertion Algorithm with Feasibilities and Deadlines
1: function MINMAXINSERTION(distances, demands, capacites, deadlines, feasibilities)
2: $num_nodes, num_routes, routes, loads \leftarrow$ initiation from overloaded arguments
3: $sorted_nodes \leftarrow$ sorting in ascending order based on their deadlines
4: for node in sorted_nodes do
5: $best_cost \leftarrow +\infty$
6: $best_vehicle \leftarrow -1$
7: $best_position \leftarrow -1$
8: $node_usability \leftarrow check wrt. feasibility, demand(node) and vehicle(loads)$
9: for vehicle in range(num_routes) do
10: if vehicle \leftarrow feasible and deadline \leftarrow fulfillable and vehicle_capacity \leftarrow sufficient then
11: $current_cost \leftarrow calculate_route_cost$
12: $insertion_cost \leftarrow cost_of_inserting(node, position, \forall vehicles_on_route)$
13: if $insertion_cost < best_cost$ then
14: $best_cost \leftarrow insertion_cost$
15: $best_vehicle \leftarrow vehicle$
16: $best_position \leftarrow position$
17: end if
18: end if
19: end for
20: insert node into routes[best_vehicle] at position best_position
21: $loads[best_vehicle] \leftarrow loads[best_vehicle] + demands[node]$
22: end for
23: return <i>routes</i>
24: end function

Backup – Cost Algorithms

Algorithm 2 Cost Algorithms in Pseudocode

```
function CALCULATECOST(distance_matrix, route)

\cot \leftarrow 0

for i from 0 to length(route) - 2 do

from_node \leftarrow route[i]

to_node \leftarrow route[i + 1]

\cot \leftarrow \cot + \operatorname{distance\_matrix[from\_node][to\_node]}

end for

return cost

end function
```

```
function CALCULATEINSERTIONCOST(dist_mat, route, position, node)
from_node assignment
to_node assignment
insertion_cost ← dist_mat[from_node][node] + dist_mat[node][to_node] - dist_mat[from_node][to_node]
return insertion_cost
end function
```

Backup – TSP vs. MinMax or MinSum

- *la* := latest arrival time
- *sa* := sum of arrivals
- us := mean absolute upper semideviation [11]
 - $\frac{1}{n}\sum_{a_i\geq\mu}(a_i-\mu)$
 - smaller us: equity ↑
- c := total route duration

- results with shorter *la* & better
 us, but higher *c* for minmax
 compared to TSP
- results with shorter *la* & better
 us, but higher *c* for minsum
 compared to TSP

$$la(\frac{TSP}{MinMax}) > 1$$

		$\frac{la(TSP)}{la(MM)}$	$\frac{la(MS)}{la(MM)}$	$\frac{sa(TSP)}{sa(MS)}$	$\frac{sa(MM)}{sa(MS)}$	$\frac{c(MM)}{c(TSP)}$	$\frac{c(MS)}{c(TSP)}$	$\frac{us(TSP)}{us(MM)}$	$\frac{us(TSP)}{us(MS)}$	$rac{us(MM)}{us(MS)}$
Augerat-A	MIN	0.948	0.970	0.974	0.973	1.004	1.027	0.926	0.902	0.850
	MAX	1.051	1.257	1.229	1.270	1.246	1.431	1.114	1.138	1.234
	AVG	1.013	1.114	1.089	1.124	1.075	1.184	1.016	1.016	1.003
Augerat-B	MIN	0.912	0.922	0.852	0.938	0.995	0.963	0.822	0.730	0.728
	MAX	1.146	1.275	1.424	1.321	1.233	1.384	1.391	1.565	1.315
	AVG	1.020	1.092	1.061	1.074	1.047	1.114	1.041	1.068	0.987
Golden	MIN	0.977	0.966	1.006	1.020	1.012	1.007	0.951	0.955	0.901
	MAX	1.049	1.263	1.185	1.210	1.095	1.303	1.089	1.080	1.052
	AVG	1.014	1.115	1.105	1.101	1.055	1.167	1.003	1.017	0.987

[2]

Backup – VRP vs TSP

- consideration of additional vehicles
- ratio gets significantly larger with multiple vehicles
 - $\frac{Ia(VRP)_Q^k}{Ia(MM)_Q^k}$
 - $\frac{sa(VRP)_Q^k}{sa(MS)_Q^k}$
- cost increases are not as significant

			$la(VRP)_{0}^{k}$	° C	$c(MM)_{O}^{k}$			$ us(VRP)_O^k$					
		$\frac{1}{la(MM)_Q^k}$			$\frac{1}{c(VRP)_{O}^{k}}$			$\frac{1}{us(MM)_Q^k}$					
		k = 1	k = 5	k = 10		k = 1	k = 5	k = 10		k = 1	k = 5	k = 10	
Augerat-A	MIN	0.948	1.050	1.170		1.004	1.044	1.067		0.926	0.942	0.993	
	MAX	1.051	1.618	1.627		1.246	1.220	1.370		1.114	1.376	1.305	
	AVG	1.013	1.365	1.390		1.075	1.122	1.212		1.016	1.163	1.150	
Augerat-B	MIN	0.912	0.890	1.066		0.995	1.013	0.994		0.822	0.622	0.771	_
	MAX	1.146	2.129	2.047		1.233	1.340	1.403		1.391	1.880	1.629	
	AVG	1.020	1.390	1.390		1.047	1.129	1.180		1.041	1.180	1.126	
Golden	MIN	0.977	1.032	1.233		1.012	0.972	0.925		0.951	0.968	1.086	
	MAX	1.049	1.723	2.880		1.095	1.234	1.288		1.089	1.324	2.178	
	AVG	1.014	1.364	1.683		1.055	1.120	1.138		1.003	1.141	1.340	[2]